Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A new polymorph of $\mathrm{Cu}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$

Natalia V. Kuratieva, ${ }^{\text {a,b }}$ Daria Mikhailova ${ }^{\text {b,c* }}$ and Helmut Ehrenberg ${ }^{\text {b,c }}$

${ }^{\text {a }}$ Nikolaev Institute of Inorganic Chemistry, SB Russian Academy of Sciences, Akademician Lavrentiev Prospekt 3, Novosibirsk 90, 630090, Russian Federation, ${ }^{\mathbf{b}}$ Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany, and ${ }^{\text {c Institute for Materials Science, Darmstadt University for }}$ Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: d.mikhailova@ifw-dresden.de

Received 10 July 2009
Accepted 11 September 2009
Online 24 October 2009
A new polymorph of nonacopper(II) bis(orthoborate) bis(hexaoxodiborate), $\mathrm{Cu}_{9}\left(\mathrm{BO}_{3}\right)_{2}\left(\mathrm{~B}_{2} \mathrm{O}_{6}\right)_{2}$, or $\mathrm{Cu}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$ with $Z^{\prime}=$ 3 , has a pseudo-layered monoclinic structure containing BO_{3} triangles and $\mathrm{B}_{2} \mathrm{O}_{6}$ units consisting of corner-sharing BO_{3} triangles and BO_{4} tetrahedra. The compound was obtained during an investigation of the $\mathrm{Li}-\mathrm{Cu}-\mathrm{B}-\mathrm{O}$ system. In contrast to the triclinic form of $\mathrm{Cu}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$, the layers are linked to one another by BO_{4} tetrahedra.

Comment

The copper(II) boron oxides $\mathrm{CuB}_{2} \mathrm{O}_{4}$ and $\mathrm{Cu}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$ attract great interest owing to the combination of their structural and unusual physical properties (Sakurai et al., 2002; Saito et al., 2008; Martinez-Ripoll et al., 1971; Behm, 1982). The noncentrosymmetric ($\overline{4} 2 d$) canted antiferromagnet $\mathrm{CuB}_{2} \mathrm{O}_{4}$ becomes chiral by application of a static magnetic field (Saito et al., 2008). Its crystal structure consists exclusively of BO_{4} tetrahedra and CuO_{4} squares. Antiferromagnetic triclinic $\mathrm{Cu}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$ can be considered as a two-dimensional spin system because of the pronounced layered character of the crystal structure (Sakurai et al., 2002). Recently, a high-pressure modification of $\mathrm{CuB}_{4} \mathrm{O}_{7}$ (Knyrim et al., 2008) with $\mathrm{Cu}^{\mathrm{II}}$, isotypic with β $\mathrm{ZnB}_{4} \mathrm{O}_{7}$, has been reported, showing BO_{4} tetrahedra and CuO_{5} square pyramids. The common feature of all these systems is Jahn-Teller distortion of the Cu coordination polyhedra, due to the electronic configuration of the d^{9} ion, which can lead to anisotropic character of the crystal structure.

During an investigation of the $\mathrm{Li}-\mathrm{Cu}-\mathrm{B}-\mathrm{O}$ system we prepared a new polymorphic modification of $\mathrm{Cu}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$. A monoclinic crystal structure of $\mathrm{Cu}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$ with $Z^{\prime}=3$ was obtained, which can be considered as pseudo-layered with much shorter distances between neighbouring layers (1.506 Å; Fig. 1) than in the triclinic polymorph with $Z^{\prime}=5(2.7 \AA$; Behm, 1982). The monoclinic structure contains six-layer packing; the layers are parallel to the [402] plane and offset with respect to one another.

The structure of the new $\mathrm{Cu}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$ pseudo-layered monoclinic modification. Solid lines show the closest interlayer $\mathrm{Cu}-\mathrm{O}$ bonds.

Figure 2
The pseudo-layer packing of $\mathrm{Cu}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$. Each layer consists of isolated CuO_{4} squares, $\mathrm{Cu}_{2} \mathrm{O}_{6}$ dimers of edge-sharing CuO_{4} squares, infinite CuO_{2} chains, and BO_{3} and corner-sharing $\mathrm{B}_{2} \mathrm{O}_{5}$ units. $\mathrm{B}-\mathrm{O}$ bonds are shown with thicker lines. Displacement ellipsoids are plotted at the 70% probability level.

There are isolated BO_{3} triangles and $\mathrm{B}_{2} \mathrm{O}_{6}$ units, consisting of corner-shared BO_{3} triangles and BO_{4} tetrahedra, in the structure, giving the formula $\mathrm{Cu}_{9}\left(\mathrm{BO}_{3}\right)_{2}\left(\mathrm{~B}_{2} \mathrm{O}_{6}\right)_{2}$, while the other polymorph has only $\mathrm{B}_{2} \mathrm{O}_{5}{ }^{4-}$ and $\mathrm{BO}_{3}{ }^{3-}$ species and a
separate O^{2-} anion, resulting in the composition $\mathrm{Cu}_{15}\left[\left(\mathrm{~B}_{2} \mathrm{O}_{5}\right)_{2-}\right.$ $\left.\left(\mathrm{BO}_{3}\right)_{6} \mathrm{O}_{2}\right]$. The shortest distance between neighbouring layers is $1.506 \AA$ for the $\mathrm{B}-\mathrm{O}$ bond in the BO_{4} tetrahedra (Fig. 1). The average $\mathrm{B}-\mathrm{O}$ length is 1.366 (7) \AA in the triangles and 1.483 (6) \AA in the tetrahedra. This form of borate anion is quite unusual, but a report on the presence of tetrahedrally and triangularly bonded B atoms in one formation already exists (Rowsell et al., 2002). Almost all of the Cu atoms have nearly planar square coordination environments, with one or two longer contacts to O atoms from neighbouring layers, forming distorted square-pyramidal or octahedral coordination environments. Atoms Cu 1 and Cu 2 are exceptions, having no additional contacts shorter than $3.1 \AA$. Each layer contains CuO_{4} squares and $\mathrm{Cu}_{2} \mathrm{O}_{6}$ dimers sharing corners, and BO_{3} triangles and $\mathrm{B}_{2} \mathrm{O}_{5}$ units, which are surrounded on both sides by infinite CuO_{2} chains from edge-sharing CuO_{4} squares (Fig. 2). The CuO_{2} chains extend parallel to the b axis. The $\mathrm{Cu}-\mathrm{O}$ bond lengths in the layer vary from 1.868 (3) to 2.088 (4) \AA and those between neighbouring layers vary from 2.333 (3) to 2.738 (3) \AA, forming CuO_{5} and CuO_{6} polyhedra.

It has already been shown (Behm, 1982; Pardo et al., 1974) that $M_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$ borates (with $M^{2+}=\mathrm{Mg}, \mathrm{Ni}$ and Co) crystallize in a completely different structure type, with only isolated BO_{3} triangles and practically undistorted MO_{6} octahedra, which form a three-dimensional network. The peculiarity of the $\mathrm{Cu}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$ structures is probably based on the ability of Cu^{2+} to adopt different coordination environments as a result of JahnTeller distortion.

Experimental

Single crystals of a new monoclinic polymorph of $\mathrm{Cu}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$ were obtained by melting a mixture of LiBO_{2} and CuO at 1273 K in air and then cooling the mixture slowly to room temperature. All attempts to obtain the monoclinic form by quenching a stoichiometric mixture of CuO and $\mathrm{B}_{2} \mathrm{O}_{3}$ from 1273 K in air led to the formation of the triclinic form of $\mathrm{Cu}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$. High-temperature powder X-ray diffraction data of triclinic $\mathrm{Cu}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$ from room temperature up to 1073 K yielded no phase transformation.

Crystal data

$\mathrm{Cu}_{9}\left(\mathrm{BO}_{3}\right)_{2}\left(\mathrm{~B}_{2} \mathrm{O}_{6}\right)_{2}$
$M_{r}=924.81$
Monoclinic, $P 2_{1} / c$
$a=17.820$ (2) A
$b=8.5232$ (12) \AA
$c=9.1706$ (12) A
$\beta=95.913$ (6) ${ }^{\circ}$

Data collection

Bruker Kappa APEXII CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.101, T_{\text {max }}=0.153$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.063$
$S=0.96$
3410 reflections
$V=1385.4(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=13.64 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.20 \times 0.20 \times 0.15 \mathrm{~mm}$

9748 measured reflections 3410 independent reflections 2542 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

> 301 parameters
> $\Delta \rho_{\max }=1.11 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.91 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu} 1-\mathrm{O} 11$ A	1.956 (5)	Cu7-O41	1.995 (3)
Cu1-O11B	1.92 (2)	Cu8-O31	1.910 (3)
$\mathrm{Cu} 1-\mathrm{O} 12^{\text {i }}$	1.906 (3)	Cu8-O32	1.996 (3)
Cu1-O13	1.896 (4)	Cu8-O42	1.898 (3)
Cu1-O26	1.924 (4)	$\mathrm{Cu} 8-\mathrm{O} 43^{\text {vii }}$	1.885 (3)
$\mathrm{Cu} 2-\mathrm{O} 12{ }^{\text {ii }}$	1.990 (3)	$\mathrm{Cu} 9-\mathrm{O} 36{ }^{\text {iii }}$	1.934 (3)
$\mathrm{Cu} 2-\mathrm{O} 21$	1.925 (3)	$\mathrm{Cu} 9-\mathrm{O} 41$	1.926 (3)
$\mathrm{Cu} 2-\mathrm{O} 26^{\text {iii }}$	2.010 (3)	$\mathrm{Cu} 9-\mathrm{O} 42^{\text {viii }}$	1.961 (3)
$\mathrm{Cu} 2-\mathrm{O} 34^{\text {iv }}$	1.967 (3)	$\mathrm{Cu} 9-\mathrm{O} 43^{\text {viii }}$	1.969 (3)
Cu3-O11A	1.908 (5)	B1-O12	1.354 (7)
Cu3-O11B	1.91 (2)	B1-O13	1.370 (7)
$\mathrm{Cu} 3-\mathrm{O} 13^{\text {ii }}$	1.850 (4)	B1-O11B	1.40 (3)
Cu3-O21	1.921 (3)	B1-O11A	1.405 (8)
Cu3-O22	1.970 (3)	B21-O21	1.451 (6)
Cu4-O25	1.903 (3)	B21-O22	1.555 (6)
Cu4-O33	1.921 (3)	B21-O23	1.422 (6)
$\mathrm{Cu} 4-\mathrm{O} 34^{v}$	1.994 (3)	B21-O24	1.506 (6)
Cu4-O35	1.916 (3)	B22-O22	1.394 (6)
$\mathrm{Cu5}-\mathrm{O} 21^{\text {vi }}$	2.324 (3)	B22-O25	1.348 (7)
Cu5-O23	1.868 (3)	B22-O26	1.355 (6)
$\mathrm{Cu5}-\mathrm{O} 24^{\text {vi }}$	2.037 (3)	B31-O31	1.465 (6)
Cu5-O25	1.954 (3)	B31-O32	1.552 (6)
Cu5-O33	1.874 (3)	B31-O33	1.415 (6)
Cu6-O23	1.897 (3)	B31-O34	1.505 (6)
$\mathrm{Cu6}-\mathrm{O} 24^{\text {vi }}$	2.013 (3)	B32-O32	1.415 (6)
Cu6-O31 ${ }^{\text {iv }}$	2.333 (3)	B32-O35	1.355 (6)
Cu6-O34 ${ }^{\text {iv }}$	2.090 (3)	B32-O36	1.359 (6)
Cu6-O35 ${ }^{\text {iii }}$	1.913 (3)	B4-O41	1.349 (6)
$\mathrm{Cu} 7-\mathrm{O} 24^{\text {vi }}$	1.958 (3)	B4-O42	1.389 (6)
Cu7-O31	1.931 (3)	B4-O43	1.381 (6)
$\mathrm{Cu} 7-\mathrm{O} 36{ }^{\text {iii }}$	1.994 (3)		

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x, y+\frac{1}{2},-z+\frac{3}{2}$; (iii) $x, y+1, z$; (iv) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (v) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (vi) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (vii) $-x+1, y-\frac{1}{2},-z-\frac{1}{2}$; (viii) $-x+1, y+\frac{1}{2},-z-\frac{1}{2}$.

Atom O 11 is disordered over two sites separated by 0.66 (3) \AA. The site-occupation factors of $\mathrm{O} 11 A$ and $\mathrm{O} 11 B$ were fixed at 0.80 and 0.20 , respectively, and no restraints were employed.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and BS (Ozawa \& Kang, 2004); software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BD3006). Services for accessing these data are described at the back of the journal.

References

Behm, H. (1982). Acta Cryst. B38, 2781-2784.
Bruker (2004). APEX2 (Version 2.4), SAINT (Version 6.0) and SADABS (Version 2.11). Bruker AXS Inc., Madison, Wisconsin, USA.
Knyrim, J. S., Friedrichs, J., Neumair, S., Roessner, F., Floredo, Y., Jakob, S., Johrendt, D., Glaum, R. \& Huppertz, H. (2008). Solid State Sci. 10, 168-176.
Martinez-Ripoll, M., Martínez-Carrera, S. \& García-Blanco, S. (1971). Acta Cryst. B27, 677-681.
Ozawa, T. C. \& Kang, S. J. (2004). J. Appl. Cryst. 37, 679.
Pardo, J., Martinez-Ripoll, M. \& García-Blanco, S. (1974). Acta Cryst. B30, 3740.

Rowsell, J. L. C., Taylor, N. J. \& Nazar, L. F. (2002). J. Chem. Soc. A, 124, $6522-$ 6523.

Saito, M., Ishikawa, K., Taniguchi, K. \& Arima, T. (2008). Phys. Rev. Lett. 101, 117402.

Sakurai, H., Tsuboi, N., Kato, M., Yoshimura, K., Kosuge, K., Mitsuda, A. \& Goto, T. (2002). Phys. Rev. B, 66, 024428.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

