Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

A new polymorph of Cu₃B₂O₆

Natalia V. Kuratieva,^{a,b} Daria Mikhailova^{b,c}* and Helmut Ehrenberg^{b,c}

^aNikolaev Institute of Inorganic Chemistry, SB Russian Academy of Sciences, Akademician Lavrentiev Prospekt 3, Novosibirsk 90, 630090, Russian Federation, ^bInstitute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany, and ^cInstitute for Materials Science, Darmstadt University for Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: d.mikhailova@ifw-dresden.de

Received 10 July 2009 Accepted 11 September 2009 Online 24 October 2009

A new polymorph of nonacopper(II) bis(orthoborate) bis-(hexaoxodiborate), $Cu_9(BO_3)_2(B_2O_6)_2$, or $Cu_3B_2O_6$ with Z' = 3, has a pseudo-layered monoclinic structure containing BO₃ triangles and B_2O_6 units consisting of corner-sharing BO₃ triangles and BO₄ tetrahedra. The compound was obtained during an investigation of the Li–Cu–B–O system. In contrast to the triclinic form of $Cu_3B_2O_6$, the layers are linked to one another by BO₄ tetrahedra.

Comment

The copper(II) boron oxides CuB₂O₄ and Cu₃B₂O₆ attract great interest owing to the combination of their structural and unusual physical properties (Sakurai et al., 2002; Saito et al., 2008; Martinez-Ripoll et al., 1971; Behm, 1982). The noncentrosymmetric ($I\overline{4}2d$) canted antiferromagnet CuB₂O₄ becomes chiral by application of a static magnetic field (Saito et al., 2008). Its crystal structure consists exclusively of BO₄ tetrahedra and CuO₄ squares. Antiferromagnetic triclinic Cu₃B₂O₆ can be considered as a two-dimensional spin system because of the pronounced lavered character of the crystal structure (Sakurai et al., 2002). Recently, a high-pressure modification of CuB_4O_7 (Knyrim *et al.*, 2008) with Cu^{II} , isotypic with β -ZnB₄O₇, has been reported, showing BO₄ tetrahedra and CuO₅ square pyramids. The common feature of all these systems is Jahn-Teller distortion of the Cu coordination polyhedra, due to the electronic configuration of the d^9 ion, which can lead to anisotropic character of the crystal structure.

During an investigation of the Li–Cu–B–O system we prepared a new polymorphic modification of Cu₃B₂O₆. A monoclinic crystal structure of Cu₃B₂O₆ with Z' = 3 was obtained, which can be considered as pseudo-layered with much shorter distances between neighbouring layers (1.506 Å; Fig. 1) than in the triclinic polymorph with Z' = 5 (2.7 Å; Behm, 1982). The monoclinic structure contains six-layer packing; the layers are parallel to the [402] plane and offset with respect to one another.

Figure 1

The structure of the new $Cu_3B_2O_6$ pseudo-layered monoclinic modification. Solid lines show the closest interlayer Cu-O bonds.

The pseudo-layer packing of $Cu_3B_2O_6$. Each layer consists of isolated CuO_4 squares, Cu_2O_6 dimers of edge-sharing CuO_4 squares, infinite CuO_2 chains, and BO_3 and corner-sharing B_2O_5 units. B-O bonds are shown with thicker lines. Displacement ellipsoids are plotted at the 70% probability level.

There are isolated BO₃ triangles and B₂O₆ units, consisting of corner-shared BO₃ triangles and BO₄ tetrahedra, in the structure, giving the formula $Cu_9(BO_3)_2(B_2O_6)_2$, while the other polymorph has only $B_2O_5^{4-}$ and BO_3^{3-} species and a

separate O^{2-} anion, resulting in the composition $Cu_{15}[(B_2O_5)_2]$ $(BO_3)_6O_2$. The shortest distance between neighbouring layers is 1.506 Å for the B-O bond in the BO_4 tetrahedra (Fig. 1). The average B-O length is 1.366 (7) Å in the triangles and 1.483 (6) Å in the tetrahedra. This form of borate anion is quite unusual, but a report on the presence of tetrahedrally and triangularly bonded B atoms in one formation already exists (Rowsell et al., 2002). Almost all of the Cu atoms have nearly planar square coordination environments, with one or two longer contacts to O atoms from neighbouring layers, forming distorted square-pyramidal or octahedral coordination environments. Atoms Cu1 and Cu2 are exceptions, having no additional contacts shorter than 3.1 Å. Each layer contains CuO₄ squares and Cu₂O₆ dimers sharing corners, and BO₃ triangles and B₂O₅ units, which are surrounded on both sides by infinite CuO_2 chains from edge-sharing CuO_4 squares (Fig. 2). The CuO₂ chains extend parallel to the b axis. The Cu-O bond lengths in the layer vary from 1.868 (3) to 2.088 (4) A and those between neighbouring layers vary from 2.333 (3) to 2.738 (3) Å, forming CuO_5 and CuO_6 polyhedra.

It has already been shown (Behm, 1982; Pardo *et al.*, 1974) that $M_3B_2O_6$ borates (with $M^{2+} = Mg$, Ni and Co) crystallize in a completely different structure type, with only isolated BO₃ triangles and practically undistorted MO_6 octahedra, which form a three-dimensional network. The peculiarity of the Cu₃B₂O₆ structures is probably based on the ability of Cu²⁺ to adopt different coordination environments as a result of Jahn–Teller distortion.

Experimental

Single crystals of a new monoclinic polymorph of $Cu_3B_2O_6$ were obtained by melting a mixture of LiBO₂ and CuO at 1273 K in air and then cooling the mixture slowly to room temperature. All attempts to obtain the monoclinic form by quenching a stoichiometric mixture of CuO and B_2O_3 from 1273 K in air led to the formation of the triclinic form of $Cu_3B_2O_6$. High-temperature powder X-ray diffraction data of triclinic $Cu_3B_2O_6$ from room temperature up to 1073 K yielded no phase transformation.

Crystal data

 $\begin{array}{l} {\rm Cu}_9({\rm BO}_3)_2({\rm B}_2{\rm O}_6)_2\\ M_r=924.81\\ {\rm Monoclinic},\ P2_1/c\\ a=17.820\ (2)\ {\rm \AA}\\ b=8.5232\ (12)\ {\rm \AA}\\ c=9.1706\ (12)\ {\rm \AA}\\ \beta=95.913\ (6)^\circ \end{array}$

Data collection

Bruker Kappa APEXII CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{min} = 0.101, T_{max} = 0.153$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.063$ S = 0.963410 reflections $V = 1385.4 \text{ (3) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 13.64 \text{ mm}^{-1}$ T = 296 K $0.20 \times 0.20 \times 0.15 \text{ mm}$

9748 measured reflections 3410 independent reflections 2542 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$

301 parameters $\Delta \rho_{\text{max}} = 1.11 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.91 \text{ e } \text{ Å}^{-3}$

Table 1		
Selected	bond lengths	(Å).

Cu1-011A	1.956 (5)	Cu7-O41	1.995 (3)
Cu1-O11B	1.92 (2)	Cu8-O31	1.910 (3)
Cu1-O12 ⁱ	1.906 (3)	Cu8-O32	1.996 (3)
Cu1-O13	1.896 (4)	Cu8-O42	1.898 (3)
Cu1-O26	1.924 (4)	Cu8-O43 ^{vii}	1.885 (3)
Cu2-O12 ⁱⁱ	1.990 (3)	Cu9-O36 ⁱⁱⁱ	1.934 (3)
Cu2-O21	1.925 (3)	Cu9-O41	1.926 (3)
Cu2-O26 ⁱⁱⁱ	2.010 (3)	Cu9-O42 ^{viii}	1.961 (3)
Cu2-O34 ^{iv}	1.967 (3)	Cu9-O43 ^{viii}	1.969 (3)
Cu3-O11A	1.908 (5)	B1-O12	1.354 (7)
Cu3-O11B	1.91 (2)	B1-O13	1.370 (7)
Cu3-O13 ⁱⁱ	1.850 (4)	B1-O11B	1.40 (3)
Cu3-O21	1.921 (3)	B1-O11A	1.405 (8)
Cu3-O22	1.970 (3)	B21-O21	1.451 (6)
Cu4-O25	1.903 (3)	B21-O22	1.555 (6)
Cu4-O33	1.921 (3)	B21-O23	1.422 (6)
Cu4-O34 ^v	1.994 (3)	B21-O24	1.506 (6)
Cu4-O35	1.916 (3)	B22-O22	1.394 (6)
Cu5-O21 ^{vi}	2.324 (3)	B22-O25	1.348 (7)
Cu5-O23	1.868 (3)	B22-O26	1.355 (6)
Cu5-O24 ^{vi}	2.037 (3)	B31-O31	1.465 (6)
Cu5-O25	1.954 (3)	B31-O32	1.552 (6)
Cu5-O33	1.874 (3)	B31-O33	1.415 (6)
Cu6-O23	1.897 (3)	B31-O34	1.505 (6)
Cu6-O24 ^{vi}	2.013 (3)	B32-O32	1.415 (6)
Cu6-O31 ^{iv}	2.333 (3)	B32-O35	1.355 (6)
Cu6-O34 ^{iv}	2.090 (3)	B32-O36	1.359 (6)
Cu6-O35 ⁱⁱⁱ	1.913 (3)	B4-O41	1.349 (6)
Cu7-O24 ^{vi}	1.958 (3)	B4-O42	1.389 (6)
Cu7-O31	1.931 (3)	B4-O43	1.381 (6)
Cu7-O36 ⁱⁱⁱ	1.994 (3)		

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) x, y + 1, z; (iv) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (v) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (vi) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (vii) $-x + 1, y - \frac{1}{2}, -z - \frac{1}{2}$; (viii) $-x + 1, y - \frac{1}{2}, -z - \frac{1}{2}$.

Atom O11 is disordered over two sites separated by 0.66 (3) Å. The site-occupation factors of O11*A* and O11*B* were fixed at 0.80 and 0.20, respectively, and no restraints were employed.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *BS* (Ozawa & Kang, 2004); software used to prepare material for publication: *SHELXTL*.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BD3006). Services for accessing these data are described at the back of the journal.

References

Behm, H. (1982). Acta Cryst. B38, 2781-2784.

- Bruker (2004). APEX2 (Version 2.4), SAINT (Version 6.0) and SADABS (Version 2.11). Bruker AXS Inc., Madison, Wisconsin, USA.
- Knyrim, J. S., Friedrichs, J., Neumair, S., Roessner, F., Floredo, Y., Jakob, S., Johrendt, D., Glaum, R. & Huppertz, H. (2008). *Solid State Sci.* 10, 168–176.
- Martinez-Ripoll, M., Martínez-Carrera, S. & García-Blanco, S. (1971). Acta Cryst. B27, 677-681.
- Ozawa, T. C. & Kang, S. J. (2004). J. Appl. Cryst. 37, 679.
- Pardo, J., Martinez-Ripoll, M. & García-Blanco, S. (1974). Acta Cryst. B30, 37–40.
- Rowsell, J. L. C., Taylor, N. J. & Nazar, L. F. (2002). J. Chem. Soc. A, **124**, 6522–6523.
- Saito, M., Ishikawa, K., Taniguchi, K. & Arima, T. (2008). Phys. Rev. Lett. 101, 117402.
- Sakurai, H., Tsuboi, N., Kato, M., Yoshimura, K., Kosuge, K., Mitsuda, A. & Goto, T. (2002). *Phys. Rev. B*, **66**, 024428.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.